Receptors in Intestinal Muscles Assignment Paper
Receptors in Intestinal Muscles Assignment Paper
Receptors in Intestinal Muscles: The experiment was conducted in order to gain better understanding of the function of the receptors in the guinea pig ileum. For this reason, various agonists and antagonists were used and the muscle reaction was monitored. The results of our experiment are summarized in the following table.Receptors in Intestinal Muscles Assignment Paper
Receptors in Intestinal Muscles NB: This essay is a result of a test that we gave our recruits. If we want our professional writers to handle your assignment, kindly below.Receptors in Intestinal Muscles Assignment Paper
As we can see acetylcholine and hexamethonium both have a triethylamine at one end and a straight chain of carbons. The basic difference is that hexamethonium has two tertiary amines, one on each end of the chain, whereas acetylcholine has the group -O-C(=O)-CH3 on one end. According to the SAR theory (Structure Activity Relationship) similar molecules in structure tend to have similar biological activity. As we know, both acetylcholine and hexamethonium bind to the nicotinic receptor, the first one to trigger a response and the second one to prevent acetylcholine from binding. Hexamethonium, having two active groups, can probably bind more easily to the receptor, effectively blocking the acetylcholine action….Receptors in Intestinal Muscles Assignment Paper
b)
ORDER A PLAGIARISM-FREE PAPER HERE
Histamine and mepyramine have less similarities in structure. Both of them have three nitrogen and an aromatic ring. Histamine has the two nitrogen inside the aromatic ring whereas mepyramine has only one nitrogen bound in the ring. Both compounds bind to the H1-Histamine receptor, to trigger different reactions. The difference in structure can be explained by the different action of the two compounds. Histamine causes contraction of the muscle and mepyramine causes its relaxation.Receptors in Intestinal Muscles Assignment Paper
The drugs tested were classified as agonists and antagonists.
Acetylcholine: Acts as neurotransmitter. It binds on the muscarinic and nicotinic receptors and causes muscle contraction.
Histamine: Is also a neurotransmitter. It binds on the H1-Histamine receptor and causes smooth muscle contraction.
Nicotine: It acts on the nicotinic cholinergic receptors and mimics the neural transmission. It stimulates the muscle, then blocks stimulation.
Receptors in Intestinal Muscles Assignment Paper